On DNA codes from a family of chain rings∗

نویسندگان

  • Elif Segah Oztas
  • Bahattin Yildiz
  • Irfan Siap
  • E. S. Oztas
چکیده

In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in [20]. The ring family that we have considered are of size 2 k , k = 1, 2, · · · and we match each ring element with a DNA 2k−1-mer. We use the so-called u-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples. 2010 MSC: 94B15, 92D10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

Reversible DNA codes over a family of non-chain rings

In this work we extend results introduced in [15]. Especially, we solve the reversibility problem for DNA codes over the non chain ring Rk,s = F42k [u1, . . . , us]/〈u 2 1 − u1, . . . , u 2 s − us〉. We define an automorphism θ over Rk,s which helps us both finding the idempotent decomposition of Rk,s and solving the reversibility problem via skew cyclic codes. Moreover, we introduce a generaliz...

متن کامل

Additive cyclic codes over finite commutative chain rings

Additive cyclic codes over Galois rings were investigated in [3]. In this paper, we investigate the same problem but over a more general ring family, finite commutative chain rings. When we focus on non-Galois finite commutative chain rings, we observe two different kinds of additivity. One of them is a natural generalization of the study in [3], whereas the other one has some unusual propertie...

متن کامل

Constructions of self-dual codes over finite commutative chain rings

We study self-dual codes over chain rings. We describe a technique for constructing new self-dual codes from existing codes and we prove that for chain rings containing an element c with c = −1 all self-dual codes can be constructed by this technique. We extend this construction to self-dual codes over principal ideal rings via the Chinese Remainder Theorem. We use torsion codes to describe the...

متن کامل

MDS codes over finite principal ideal rings

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016